A two-phase model for compaction and damage 3. Applications to shear localization and plate boundary formation
نویسندگان
چکیده
Abstract. A new two-phase theory employing a nonequilibrium relation between interfacial surface energy, pressure, and viscous deformation [Bercovici et al., this issue] provides a model for damage (void generation and microcracking) and thus a continuum description of weakening, failure, and shear localization. Here we demonstrate applications of the theory to shear localization with simple shear flow calculations in which one phase (the matrix, representing, for example, silicate) is much stronger (more viscous) than the other phase (the fluid). This calculation is motivated as a simple model of plate boundary formation in a shear zone. Even without shear the two phases eventually separate due to gradients in surface tension. However, the influence of shear on phase separation is manifest in several ways. As shear velocity increases, the separation rate of the phases increases, demonstrating a basic feedback mechanism: Accumulation of the fluid phase causes focused weak zones on which shear concentrates, causing more damage and void generation and thus greater accumulation of fluid. Beyond a critical shear velocity, phase separation undergoes intense acceleration and focusing, leading to a “tear localization” in which the porosity becomes nearly singular in space and grows rapidly like a tear or crack. At an even higher value of shear velocity, phase separation is inhibited such that shear localization gives way to defocusing of weak zones suggestive of uniform microcracking and failure throughout the layer. Our two-phase damage theory thus predicts a wide variety of shear localization and failure behavior with a continuum model. Applications of the theory to various fields, such as granular dynamics, metallurgy, and tectonic plate boundary formation are numerous.
منابع مشابه
Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation
S U M M A R Y The two-phase theory for compaction and damage proposed by Bercovici et al. (2001a, J. Geophys. Res.,106, 8887–8906) employs a nonequilibrium relation between interfacial surface energy, pressure and viscous deformation, thereby providing a model for damage (void generation and microcracking) and a continuum description of weakening, failure and shear localization. Here we examine...
متن کاملTectonic plate generation and two-phase damage: void growth versus grainsize reduction
The two-phase theory for compaction and damage employs a nonequilibrium relation between interfacial surface energy, pressure, and viscous deformation, thereby providing a model for damage (void generation and microcracking) and a continuum description of weakening, failure, and shear localization. Here we examine the application of this theory to the problem of generating platelike behavior fr...
متن کاملShear Localization due to Strain Softening in Side Pressed Cylinders
In this paper, shear localization due to strain softening in sidepressed cylinders, is inverstigated. Shear localization causes formation of macroscopic shear bands which can be obsserved in the metallographic cross-section. In this paper, for the first time a method is presented in which a simple two-slice model is used to study the formation of shear bands. The results obtained form this mode...
متن کاملShear Localization due to Strain Softening in Side Pressed Cylinders
In this paper, shear localization due to strain softening in sidepressed cylinders, is inverstigated. Shear localization causes formation of macroscopic shear bands which can be obsserved in the metallographic cross-section. In this paper, for the first time a method is presented in which a simple two-slice model is used to study the formation of shear bands. The results obtained form this mode...
متن کاملA two-phase model for compaction and damage 1. General Theory
Abstract. A theoretical model for the dynamics of a simple two-phase mixture is presented. A classical averaging approach combined with symmetry arguments is used to derive the mass, momentum, and energy equations for the mixture. The theory accounts for surficial energy at the interface and employs a nonequilibrium equation to relate the rate of work done by surface tension to the rates of bot...
متن کامل